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Think about a baseball game. The batter has to decide whether  
and how to hit the incoming pitch. He needs to judge the position and 
speed of the ball, given his own visual uncertainty, and to estimate  
the probability of a successful swing, given his own visuo-motor 
uncertainty.

Visuo-motor decisions such as this are common in everyday life and 
have been studied in a rich and increasing body of laboratory tasks1–3. 
Human subjects are frequently found to compensate for their own 
sensorimotor uncertainty in ways that approximate an ideal Bayesian 
observer who maximizes expected reward4–11. Although plausible 
neural representations have been proposed for the combination of 
probabilistic information12,13, little is known about representations 
of pdfs that capture visuo-motor error14.

In the framework of Bayesian decision theory2, the visuo-motor 
uncertainty associated with a possible reaching movement is sum-
marized as a pdf on possible movement outcomes in space or time. 
The pdf is often close to Gaussian in form (Fig. 1a) and is centered on 
the point that the subject aims for. Suppose that the subject can gain 
a reward if she reaches to and hits a small target. A plot of the reward 
associated with each possible outcome is called the gain function G(x), 
and here is either 0 (outside the target) or the promised reward (inside 
the target). If the subject aims at location a, then her expected gain 
on each attempt would be EG = ∫G(x)f(x − a)dx, the integral of the 
product of the pdf with a gain function2. In Figure 1b, we illustrate 
the computation of expected gain when the subject aims at the center 
of the target.

The computation involved is potentially demanding, and a possible 
way to reduce the computational load is to use additive weighted 

mixtures of a fixed set of basis distributions b1(x), …, bn(x) to approxi-
mate the objective pdfs15 
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Two examples of a discrete mixture distribution are shown in  
Figure 1a, the first based on non-overlapping uniform basis distri-
butions and the second on Gaussian distributions that all share a 
common variance, but differ in location. The Gaussian basis func-
tions overlap, but—if they are sufficiently widely separated—they are 
effectively orthogonal for our purposes. We refer to such mixtures 
of a finite number of orthogonal or nearly orthogonal functions as 
discrete mixture distributions.

In three experiments, we estimated the internal pdfs used by human 
subjects in planning speeded reaching movements and compared 
them with their objective pdfs. We found that subjects’ choice behavior  
was better described by (Bayesian optimal) decisions based on a mix-
ture of discrete distributions than by single Gaussian distributions  
or other unimodal distributions, even though their actual motor 
error distributions were close to Gaussian, and that the mixture of  
non-overlapping uniform distributions (U-mix; Fig. 1a) outper-
formed other discrete mixture distributions, including mixture of 
Gaussians. We found that the number of basis functions in the discrete 
mixture representation needed to account for human performance  
is small, roughly 2–6.

Discrete weighted mixture representations can speed computation 
of expected gain: if the expected gain for each basis function can be 
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In many laboratory visuo-motor decision tasks, subjects compensate for their own visuo-motor error, earning close to  
the maximum reward possible. To do so, they must combine information about the distribution of possible error with values 
associated with different movement outcomes. The optimal solution is a potentially difficult computation that presupposes 
knowledge of the probability density function (pdf) of visuo-motor error associated with each possible planned movement.  
It is unclear how the brain represents such pdfs or computes with them. In three experiments, we used a forced-choice  
method to reveal subjects’ internal representations of their spatial visuo-motor error in a speeded reaching movement. 
Although subjects’ objective distributions were unimodal, close to Gaussian, their estimated internal pdfs were typically 
multimodal and were better described as mixtures of a small number of distributions differing only in location and  
scale. Mixtures of a small number of uniform distributions outperformed other mixture distributions, including mixtures  
of Gaussians.
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computed, the expected gain associated with alternative targets or 
movement plans will be reduced to weighted linear summation of 
the contributions from each basis distribution. The use of mixtures 
of distributions is also relevant to Bayesian model averaging, models 
based on mixtures of experts and hierarchical formulations of motor 
control (for example, hierarchical MOSAIC16).

Each experiment consisted of two phases, training and choice.  
The results of the training phase allowed us to estimate subjects’ 
objective pdfs and the results of the choice phase allowed us to  
estimate their internal pdfs.

Figure 2 illustrates the task and design of experiment 1. Human 
subjects were first trained to repeatedly reach to a specific target on 
the screen within a time limit (Fig. 2a). Typically, their endpoints had 
a distribution close to bivariate Gaussian (Fig. 2b).

In a second phase, subjects viewed two virtual targets differing in 
width and configuration and chose the target they preferred to try later 
for monetary rewards (Fig. 2c). We assumed subjects’ choice was gen-
erated by a softmax function based on their estimates of the expected 
utilities of the two targets (Online Methods), which, under our reward 
structure (hit = fixed reward, miss = nothing), were reduced to the prob-
abilities of hit. Thus, subjects’ choices were determined by their internal 
pdfs, integrated over the target regions (see Fig. 2d for an illustration).  

Conversely, we could reconstruct approximations of subjects’  
internal pdfs from their choices17.

The targets were vertically elongated so that only horizontal error 
affected reward. On each trial, one target was a triple (three identical, 
equally gapped rectangles) and the other was a single (one rectangle). 
We chose the triple target as a convenient way to explore the distribu-
tion of probability mass in the tails of the internal pdfs by varying the 
gap between the outer rectangles and the inner (Fig. 2e).

RESULTS
Experiment 1: objective pdf
We ignore the irrelevant vertical direction and describe only the hori-
zontal statistics. Subjects’ endpoints in the reaching task (Fig. 2b) had 
a Gaussian-like distribution that was symmetric around the target 
center. The distribution of all but one subject’s visuo-motor error 
(endpoints’ deviation from the mean endpoint) had a kurtosis higher 
than that of Gaussian (by 0.04–1.78, median of 0.44), indicating a 
more peaked center or heavier tail. We modeled each subject’s visuo-
motor error as a scaled Student’s t distribution with a scale parameter 
and a shape parameter (Online Methods), for which the Gaussian  
distribution is a limiting case. The t model captured individual  
subjects’ visuo-motor error in s.d. (Pearson’s r = 1.0, P < 0.001) and 
kurtosis (Pearson’s r = 0.82, P = 0.004). We refer to the t distribu-
tion estimated in a subject’s reaching task as the subject’s objective  
visuo-motor error distribution, or objective pdf.

Experiment 1: internal pdf
We first visualized subjects’ internal pdfs from their choices, assuming  
a Gaussian-process prior (Online Methods), which results in a 
smoothed estimate of the pdf; it assumes only a weak correlation 
between adjacent locations on the pdf and allows for the possibility 
that the underlying distribution is multimodal.

It should be noted that the resulting fits are effectively smoothed 
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DISCUSSION
We estimated human subjects’ internal model of their own visuo-
motor error in a speeded reaching task and compared it with their 
objective visuo-motor error. Subjects’ actual visuo-motor error distri-
butions (objective pdfs) were in all cases unimodal, close to a Gaussian 
in many cases and close to a t-distribution in the remainder. However, 
the distributions implicit in their choices (internal pdfs) were very 
different from their actual distributions.

We found, first of all, that multimodal mixture distributions  
(for example, U-mix, mG-mix) provided a better fit to subjects’  
choice patterns than any single Gaussian or the alike. Second, of  
the mixture models tested, a model consisting of a mixture of non-
overlapping uniform distributions with two to six nonzero steps  
performed best.

Both results are unexpected. The first and broader conclusion—
that subjects’ internal pdfs were mixtures of basis distributions—is 
well supported by our data. Moreover, the basis distributions in the 
mixtures either had no overlaps (for example, U-mix) or just slight 
overlaps (for example, mG-mix). We refer to such mixtures of local 
distributions as discrete mixture representations. The subjects’  
representations of their own visuo-motor error were discrete.

It is less clear what the form of the basis distributions was: the 
mG-mix fits came close to the U-mix in both goodness-of-fit and 
overall appearance. Although fits to the data favored uniform basis 
distributions over Gaussian, there could well be a third candidate that 
would dominate both.

There are two possible advantages of using uniform rather than 
Gaussian mixtures to represent probability mass. First, we can ‘tile’ 
the space of events in an orthogonal (sparse) fashion, without any 
bias to a particular location. Second, the probability assigned to 
each event (here, endpoint) depends only on the tile it is in. That is,  
we can estimate the constant probability density of each tile by simply 
counting events in the tile.

Relationship to previous measures
A few studies have reconstructed human subjects’ representation 
of sensory probability distributions based on their decisions. One 
study found that subjects’ internal pdf of a Gaussian prior distribution 
closely followed the objective prior (Fig. 2d of ref. 7), which seem-
ingly disagrees with a discrete mixture representation of probability 
distributions. However, this study7 showed is that subjects computed 
a weighted average of the mean of a prior distribution and the mean 
of a likelihood. Although such averaging is consistent with Bayesian 
inference based on Gaussians, it is unclear how to infer from their data 
that subjects actually maintained and multiplied specifically Gaussian 
distributions22. Notably, a second condition in the same study  
demonstrated that subjects successfully represented a bimodal prior 
distribution, a capability that is, broadly, consistent with our finding 
that the brain employs mixture distributions. Of course, a formal test 

of whether behavior in such a setting is best fit by particular forms  
of mixture, such as our U-mix, will be needed in the future.

One surprising feature of the discrete mixture representation that 
we observed was that it was multimodal, although the true distribu-
tion was unimodal. Although this outcome was unexpected, it is not 
completely unprecedented: subjects’ representation of temporal prior 
distributions in a previous study (Figs. 7–9 in ref. 23) appeared to have 
more than one mode.

Discrete representation and near-optimal motor decisions
Our finding that subjects’ internal pdfs of their own visuo-motor 
error distribution were discrete, thereby deviating systematically 
from the objective distribution, does not necessarily conflict with 
near-optimal human performance in previous studies4–10 (see ref. 11  
for an example of a binary choice task). Many tasks may simply 
be insensitive to systematic deviations in subjects’ internal pdfs.  
For example, a previous study21 found that a virtual subject with a 
Gaussian error distribution, but who mistakenly assumes it is a uni-
form distribution of the same variance, would still be able to achieve 
near-optimal performance in a previously described visuo-motor 
decision task8. A discrete mixture representation with two to six 
nonzero steps, as we found in our experiments, enables even better 
approximations to the objective distribution and can therefore lead 
to near-optimal performance as well.

Simplifying probabilistic calculation
Psychologists and neuroscientists modeling biological computation 
have encountered the computational problems that arise when manip-
ulating high-dimensional or continuous distributions in many guises. 
Broadly speaking, tractable solutions require approximating the exact 
computation with some simpler, sparser form. The discrete mixture 
representation that we propose is one example, and shares its essential 
feature of sparseness with many other approaches, such as approxi-
mating distributions with a reduced rank form24 or a kernel density 
estimator25, with Monte Carlo approximations that substitute a few 
samples for a random variable26–29, or with the use of linear models 
to approximate surface spectral reflectance density functions30. Given 
that these approaches share many essential similarities, it is possible 
that all arise from the same neural solution to complexity.
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Figure 6  Experiment 3. (a) The reaching task. Left, the task. The task for 
experiment 3 was the same as that for experiment 1, except that a circular 
target was used. Right, the endpoints for one subject. (b) The choice task. 
The task for experiment 3 was the same as that for experiment 1, except 
that each pair of targets was a rectangle and a circle. (c) Design of the 
choice task. Ten different rectangles were used; for each, the radius of  
its paired circle was adjusted by adaptive procedures for 100 trials.  
(d) AICc difference between the Gaussian model and the other four 
models summed over the 18 subjects. The unimodal models (including 
vG-mix) and mixture models are coded in light gray and dark gray, 
respectively. Positive difference indicates better fit. (e) Number of 
subjects best fit by each U-mix model.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature NEUROSCIENCE  VOLUME 18 | NUMBER 8 | AUGUST 2015	 1157

a r t ic  l e s

An important question for future work is whether the U-mix (or 
other mixture) distributions that we observed are the only internal 
representations of the distribution of visuo-motor error available to 
the visuo-motor system or whether they are transient representations, 
derived from a more accurate representation, that vary with the task 
imposed. That is, the neural system could maintain a high-resolution 
representation of visuo-motor error, but uses simplified representa-
tions to carry out specific computational tasks, just as most common 
programming languages use a variety of numerical representations.

Discrete representation as explanation for decision biases
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an anomaly that could not be explained by any loss functions or probability  
distortions without introducing an asymmetry between left and right, and which 
was probably due to unknown visuo-motor biases subjects had with respect to 
pointing to left or right. For this reason, we used the curve for noninverted trials 
as the data to account for in our simulation.

Summary of statistical tests. No statistical methods were used to predetermine 
sample sizes but our choice of sample size was based on previous work, includ-
ing ref. 21. AICc18,19 and group-level Bayesian model selection20 were used in 
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all experiments. Pearson’s correlation was used in experiment 1. We verified  
the assumptions of all of the statistical tests used.

A Supplementary Methods Checklist is available.
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